Scalable Gaussian Processes for Supervised Hashing
We propose a flexible procedure for large-scale image search by hash functions with kernels. Our method treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present an efficient inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and parallelization. Experiments on three large-scale image dataset demonstrate the effectiveness of the proposed hashing method, Gaussian Process Hashing (GPH), for short binary codes and the datasets without predefined classes in comparison to the state-of-the-art supervised hashing methods.
READ FULL TEXT