Seamless Integration of Analysis and Design: Automatic CAD Reconstruction of Post-Analysis Geometries:

by   Sebastian Hube, et al.

A key step during industrial design is the passing of design information from computer aided design (CAD) to analysis tools (CAE) and vice versa. Here, one is faced with a severe incompatibility in geometry representation: While CAD is usually based on surface representations, analysis mostly relies on volumetric representations. The forward pass, i.e., converting CAD data to computational meshes, is well understood and established. However, the same does not hold for the inverse direction, i.e., CAD reconstruction of deformed geometries resulting, e.g., from shape optimization. The few reconstruction methods reported mainly rely on spline fitting, in particular methods that rely on creating new splines simililar to shape reconstruction from 3D imaging. In contrast, this paper studies a novel approach that reuses the CAD data given in the initial design. We show that this concept leads to precise shape reconstructions while also preserving the initial notion of features defined during design. Furthermore, reusing the initial CAD representation reduces the shape reconstruction problem to a shape modification problem. We study this unique feature and show that it enables the reconstruction of CAD data from computational meshes by composing each spline in the initial CAD data with a single, global deformation spline. While post-processing is needed for use in current CAD software, this novel approach not only allows creating watertight models, but also enables reconstructing complete CAD models even from defeatured computational meshes.


page 2

page 3

page 5

page 7

page 8

page 9

page 11

page 12


DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Deep generative models of 3D shapes have received a great deal of resear...

Branched splines

Spline functions have long been used in numerical solution of differenti...

Neural Networks vs. Splines: Advances in Numerical Extruder Design

We present a novel application of neural networks to design improved mix...

Multiply Periodic Splines

Spline functions have long been used in numerical solution of differenti...

Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software

In this publication, the interactive planning and reconstruction of cran...

Hex Me If You Can

HEXME consists of tetrahedral meshes with tagged features, and of a work...

Template-based Monocular 3D Shape Recovery using Laplacian Meshes

We show that by extending the Laplacian formalism, which was first intro...

Please sign up or login with your details

Forgot password? Click here to reset