Selective and Collaborative Influence Function for Efficient Recommendation Unlearning

by   Yuyuan Li, et al.
Zhejiang University

Recent regulations on the Right to be Forgotten have greatly influenced the way of running a recommender system, because users now have the right to withdraw their private data. Besides simply deleting the target data in the database, unlearning the associated data lineage e.g., the learned personal features and preferences in the model, is also necessary for data withdrawal. Existing unlearning methods are mainly devised for generalized machine learning models in classification tasks. In this paper, we first identify two main disadvantages of directly applying existing unlearning methods in the context of recommendation, i.e., (i) unsatisfactory efficiency for large-scale recommendation models and (ii) destruction of collaboration across users and items. To tackle the above issues, we propose an extra-efficient recommendation unlearning method based on Selective and Collaborative Influence Function (SCIF). Our proposed method can (i) avoid any kind of retraining which is computationally prohibitive for large-scale systems, (ii) further enhance efficiency by selectively updating user embedding and (iii) preserve the collaboration across the remaining users and items. Furthermore, in order to evaluate the unlearning completeness, we define a Membership Inference Oracle (MIO), which can justify whether the unlearned data points were in the training set of the model, i.e., whether a data point was completely unlearned. Extensive experiments on two benchmark datasets demonstrate that our proposed method can not only greatly enhance unlearning efficiency, but also achieve adequate unlearning completeness. More importantly, our proposed method outperforms the state-of-the-art unlearning method regarding comprehensive recommendation metrics.


page 1

page 2

page 3

page 4


Efficiently Maintaining Next Basket Recommendations under Additions and Deletions of Baskets and Items

Recommender systems play an important role in helping people find inform...

Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value

Data valuation is a powerful framework for providing statistical insight...

M2pht: Mixed Models with Preferences and Hybrid Transitions for Next-Basket Recommendation

Next-basket recommendation considers the problem of recommending a set o...

Making Recommender Systems Forget: Learning and Unlearning for Erasable Recommendation

Privacy laws and regulations enforce data-driven systems, e.g., recommen...

Recommendation Unlearning via Matrix Correction

Recommender systems are important for providing personalized services to...

SocialTrans: A Deep Sequential Model with Social Information for Web-Scale Recommendation Systems

On social network platforms, a user's behavior is based on his/her perso...

Learning over No-Preferred and Preferred Sequence of Items for Robust Recommendation (Extended Abstract)

This paper is an extended version of [Burashnikova et al., 2021, arXiv: ...

Please sign up or login with your details

Forgot password? Click here to reset