Self-explaining variational posterior distributions for Gaussian Process models

09/08/2021
by   Sarem Seitz, et al.
0

Bayesian methods have become a popular way to incorporate prior knowledge and a notion of uncertainty into machine learning models. At the same time, the complexity of modern machine learning makes it challenging to comprehend a model's reasoning process, let alone express specific prior assumptions in a rigorous manner. While primarily interested in the former issue, recent developments intransparent machine learning could also broaden the range of prior information that we can provide to complex Bayesian models. Inspired by the idea of self-explaining models, we introduce a corresponding concept for variational GaussianProcesses. On the one hand, our contribution improves transparency for these types of models. More importantly though, our proposed self-explaining variational posterior distribution allows to incorporate both general prior knowledge about a target function as a whole and prior knowledge about the contribution of individual features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro