Semi-Supervised Noisy Student Pre-training on EfficientNet Architectures for Plant Pathology Classification

12/01/2020
by   Sedrick Scott Keh, et al.
0

In recent years, deep learning has vastly improved the identification and diagnosis of various diseases in plants. In this report, we investigate the problem of pathology classification using images of a single leaf. We explore the use of standard benchmark models such as VGG16, ResNet101, and DenseNet 161 to achieve a 0.945 score on the task. Furthermore, we explore the use of the newer EfficientNet model, improving the accuracy to 0.962. Finally, we introduce the state-of-the-art idea of semi-supervised Noisy Student training to the EfficientNet, resulting in significant improvements in both accuracy and convergence rate. The final ensembled Noisy Student model performs very well on the task, achieving a test score of 0.982.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset