Set Augmented Triplet Loss for Video Person Re-Identification

11/02/2020
by   Pengfei Fang, et al.
0

Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few frame features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset