Simulating Coverage Path Planning with Roomba
Coverage Path Planning involves visiting every unoccupied state in an environment with obstacles. In this paper, we explore this problem in environments which are initially unknown to the agent, for purposes of simulating the task of a vacuum cleaning robot. A survey of prior work reveals sparse effort in applying learning to solve this problem. In this paper, we explore modeling a Cover Path Planning problem using Deep Reinforcement Learning, and compare it with the performance of the built-in algorithm of the Roomba, a popular vacuum cleaning robot.
READ FULL TEXT