Singularity-Avoiding Multi-Dimensional Root-Finder

04/21/2022
by   Hirotada Okawa, et al.
0

We proposed in this paper a new method, which we named the W4 method, to solve nonlinear equation systems. It may be regarded as an extension of the Newton-Raphson (NR) method to be used when the method fails. Indeed our method can be applied not only to ordinary problems with non-singular Jacobian matrices but also to problems with singular Jacobians, which essentially all previous methods that employ the inversion of the Jacobian matrix have failed to solve. In this article, we demonstrate that (i) our new scheme can define a non-singular iteration map even for those problems by utilizing the singular value decomposition, (ii) a series of vectors in the new iteration map converges to the right solution under a certain condition, (iii) the standard two-dimensional problems in the literature that no single method proposed so far has been able to solve completely are all solved by our new method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro