Stable Dynamic Mode Decomposition Algorithm for Noisy Pressure-Sensitive Paint Measurement Data

07/26/2021
by   Yuya Ohmichi, et al.
0

In this study, we proposed the truncated total least squares dynamic mode decomposition (T-TLS DMD) algorithm, which can perform DMD analysis of noisy data. By adding truncation regularization to the conventional TLS DMD algorithm, T-TLS DMD improves the stability of the computation while maintaining the accuracy of TLS DMD. The effectiveness of the proposed method was evaluated by the analysis of the wake behind a cylinder and pressure-sensitive paint (PSP) data for the buffet cell phenomenon. The results showed the importance of regularization in the DMD algorithm. With respect to the eigenvalues, T-TLS DMD was less affected by noise, and accurate eigenvalues could be obtained stably, whereas the eigenvalues of TLS and subspace DMD varied greatly due to noise. It was also observed that the eigenvalues of the standard and exact DMD had the problem of shifting to the damping side, as reported in previous studies. With respect to eigenvectors, T-TLS and exact DMD captured the characteristic flow patterns clearly even in the presence of noise, whereas TLS and subspace DMD were not able to capture them clearly due to noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro