Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning

05/14/2020
by   Jianwen Sun, et al.
2

Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in various complex tasks, designing effective adversarial attacks is an indispensable prerequisite towards building robust DRL algorithms. In this paper, we introduce two novel adversarial attack techniques to stealthily and efficiently attack the DRL agents. These two techniques enable an adversary to inject adversarial samples in a minimal set of critical moments while causing the most severe damage to the agent. The first technique is the critical point attack: the adversary builds a model to predict the future environmental states and agent's actions, assesses the damage of each possible attack strategy, and selects the optimal one. The second technique is the antagonist attack: the adversary automatically learns a domain-agnostic model to discover the critical moments of attacking the agent in an episode. Experimental results demonstrate the effectiveness of our techniques. Specifically, to successfully attack the DRL agent, our critical point technique only requires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and the antagonist technique needs fewer than 5 steps (4 Mujoco tasks), which are significant improvements over state-of-the-art methods.

READ FULL TEXT

page 4

page 6

page 7

page 8

research
01/27/2020

Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) has numerous applications in the real ...
research
06/09/2020

Stealing Deep Reinforcement Learning Models for Fun and Profit

In this paper, we present the first attack methodology to extract black-...
research
03/08/2017

Tactics of Adversarial Attack on Deep Reinforcement Learning Agents

We introduce two tactics to attack agents trained by deep reinforcement ...
research
06/06/2022

Robust Adversarial Attacks Detection based on Explainable Deep Reinforcement Learning For UAV Guidance and Planning

The danger of adversarial attacks to unprotected Uncrewed Aerial Vehicle...
research
09/05/2019

Spatiotemporally Constrained Action Space Attacks on Deep Reinforcement Learning Agents

Robustness of Deep Reinforcement Learning (DRL) algorithms towards adver...
research
04/23/2022

GFCL: A GRU-based Federated Continual Learning Framework against Adversarial Attacks in IoV

The integration of ML in 5G-based Internet of Vehicles (IoV) networks ha...
research
07/16/2018

Online Robust Policy Learning in the Presence of Unknown Adversaries

The growing prospect of deep reinforcement learning (DRL) being used in ...

Please sign up or login with your details

Forgot password? Click here to reset