Sum-Product Network Decompilation
There exists a dichotomy between classical probabilistic graphical models, such as Bayesian networks (BNs), and modern tractable models, such as sum-product networks (SPNs). The former have generally intractable inference, but allow a high level of interpretability, while the latter admits a wide range of tractable inference routines, but are typically harder to interpret. Due to this dichotomy, tools to convert between BNs and SPNs are desirable. While one direction – compiling BNs into SPNs – is well discussed in Darwiche's seminal work on arithmetic circuit compilation, the converse direction – decompiling SPNs into BNs – has received surprisingly little attention. In this paper, we fill this gap by proposing SPN2BN, an algorithm that decompiles an SPN into a BN. SPN2BN has several salient features when compared to the only other two works decompiling SPNs. Most significantly, the BNs returned by SPN2BN are minimal independence-maps. Secondly, SPN2BN is more parsimonious with respect to the introduction of latent variables. Thirdly, the output BN produced by SPN2BN can be precisely characterized with respect to the compiled BN. More specifically, a certain set of directed edges will be added to the input BN, giving what we will call the moral-closure. It immediately follows that there is a set of BNs related to the input BN that will also return the same moral closure. Lastly, it is established that our compilation-decompilation process is idempotent. We confirm our results with systematic experiments on a number of synthetic BNs.
READ FULL TEXT