SuperFed: Weight Shared Federated Learning

01/26/2023
by   Alind Khare, et al.
0

Federated Learning (FL) is a well-established technique for privacy preserving distributed training. Much attention has been given to various aspects of FL training. A growing number of applications that consume FL-trained models, however, increasingly operate under dynamically and unpredictably variable conditions, rendering a single model insufficient. We argue for training a global family of models cost efficiently in a federated fashion. Training them independently for different tradeoff points incurs O(k) cost for any k architectures of interest, however. Straightforward applications of FL techniques to recent weight-shared training approaches is either infeasible or prohibitively expensive. We propose SuperFed - an architectural framework that incurs O(1) cost to co-train a large family of models in a federated fashion by leveraging weight-shared learning. We achieve an order of magnitude cost savings on both communication and computation by proposing two novel training mechanisms: (a) distribution of weight-shared models to federated clients, (b) central aggregation of arbitrarily overlapping weight-shared model parameters. The combination of these mechanisms is shown to reach an order of magnitude (9.43x) reduction in computation and communication cost for training a 5*10^18-sized family of models, compared to independently training as few as k = 9 DNNs without any accuracy loss.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro