DeepAI AI Chat
Log In Sign Up

Swarm Modelling with Dynamic Mode Decomposition

by   Emma Hansen, et al.

Modelling biological or engineering swarms is challenging due to the inherently high dimension of the system, despite the often low-dimensional emergent dynamics. Most existing swarm modelling approaches are based on first principles and often result in swarm-specific parameterizations that do not generalize to a broad range of applications. In this work, we apply a purely data-driven method to (1) learn local interactions of homogeneous swarms through observation data and to (2) generate similar swarming behaviour using the learned model. In particular, a modified version of dynamic mode decomposition with control, called swarmDMD, is developed and tested on the canonical Vicsek swarm model. The goal is to use swarmDMD to learn inter-agent interactions that give rise to the observed swarm behaviour. We show that swarmDMD can faithfully reconstruct the swarm dynamics, and the model learned by swarmDMD provides a short prediction window for data extrapolation with a trade-off between prediction accuracy and prediction horizon. We also provide a comprehensive analysis on the efficacy of different observation data types on the modelling, where we find that inter-agent distance yields the most accurate models. We believe the proposed swarmDMD approach will be useful for studying multi-agent systems found in biology, physics, and engineering.


page 4

page 8

page 9

page 14

page 15


Clone Swarms: Learning to Predict and Control Multi-Robot Systems by Imitation

In this paper, we propose SwarmNet – a neural network architecture that ...

Inverse Reinforcement Learning in Swarm Systems

Inverse reinforcement learning (IRL) has become a useful tool for learni...

A Neuro-inspired Theory of Joint Human-Swarm Interaction

Human-swarm interaction (HSI) is an active research challenge in the rea...

Towards Safe and Efficient Swarm-Human Collaboration: A Hierarchical Multi-Agent Pickup and Delivery framework

The multi-Agent Pickup and Delivery (MAPD) problem is crucial in the rea...

Data-driven Analysis for Understanding Team Sports Behaviors

Understanding the principles of real-world biological multi-agent behavi...