System Cards for AI-Based Decision-Making for Public Policy

by   Furkan Gursoy, et al.

Decisions in public policy are increasingly being made or assisted by automated decision-making algorithms. Many of these algorithms process personal data for tasks such as predicting recidivism, assisting welfare decisions, identifying individuals using face recognition, and more. While potentially improving efficiency and effectiveness, such algorithms are not inherently free from issues such as bias, opaqueness, lack of explainability, maleficence, and the like. Given that the outcomes of these algorithms have significant impacts on individuals and society and are open to analysis and contestation after deployment, such issues must be accounted for before deployment. Formal audits are a way towards ensuring algorithms that are used in public policy meet the appropriate accountability standards. This work, based on an extensive analysis of the literature, proposes a unifying framework for system accountability benchmark for formal audits of artificial intelligence-based decision-aiding systems in public policy as well as system cards that serve as scorecards presenting the outcomes of such audits. The benchmark consists of 50 criteria organized within a four by four matrix consisting of the dimensions of (i) data, (ii) model, (iii) code, (iv) system and (a) development, (b) assessment, (c) mitigation, (d) assurance. Each criterion is described and discussed alongside a suggested measurement scale indicating whether the evaluations are to be performed by humans or computers and whether the evaluation outcomes are binary or on an ordinal scale. The proposed system accountability benchmark reflects the state-of-the-art developments for accountable systems, serves as a checklist for future algorithm audits, and paves the way for sequential work as future research.


page 1

page 7


Artificial Intelligence for EU Decision-Making. Effects on Citizens Perceptions of Input, Throughput and Output Legitimacy

A lack of political legitimacy undermines the ability of the European Un...

The Human Factor in AI Safety

AI-based systems have been used widely across various industries for dif...

"Public(s)-in-the-Loop": Facilitating Deliberation of Algorithmic Decisions in Contentious Public Policy Domains

This position paper offers a framework to think about how to better invo...

Randomized Classifiers vs Human Decision-Makers: Trustworthy AI May Have to Act Randomly and Society Seems to Accept This

As artificial intelligence (AI) systems are increasingly involved in dec...

Beyond Ads: Sequential Decision-Making Algorithms in Public Policy

We explore the promises and challenges of employing sequential decision-...

'Team-in-the-loop' organisational oversight of high-stakes AI

Oversight is rightly recognised as vital within high-stakes public secto...

Scaling Scientometrics: Dimensions on Google BigQuery as an infrastructure for large-scale analysis

Cloud computing has the capacity to transform many parts of the research...

Please sign up or login with your details

Forgot password? Click here to reset