Taming Large-Scale Genomic Analyses via Sparsified Genomics

by   Mohammed Alser, et al.

Searching for similar genomic sequences is an essential and fundamental step in biomedical research and an overwhelming majority of genomic analyses. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable much faster and more memory-efficient processing of the sparsified, shorter genomic sequences, while providing similar or even higher accuracy compared to processing non-sparsified sequences. Sparsified genomics provides significant benefits to many genomic analyses and has broad applicability. We show that sparsifying genomic sequences greatly accelerates the state-of-the-art read mapper (minimap2) by 1.54-8.8x using real Illumina, HiFi, and ONT reads, while providing a higher number of mapped reads and more detected small and structural variations. Sparsifying genomic sequences makes containment search through very large genomes and very large databases 72.7-75.88x faster and 723.3x more storage-efficient than searching through non-sparsified genomic sequences (with CMash and KMC3). Sparsifying genomic sequences enables robust microbiome discovery by providing 54.15-61.88x faster and 720x more storage-efficient taxonomic profiling of metagenomic samples over the state-of-art tool (Metalign). We design and open-source a framework called Genome-on-Diet as an example tool for sparsified genomics, which can be freely downloaded from https://github.com/CMU-SAFARI/Genome-on-Diet.


page 3

page 6

page 11

page 13

page 24

page 29

Please sign up or login with your details

Forgot password? Click here to reset