Targeted collapse regularized autoencoder for anomaly detection: black hole at the center

06/22/2023
by   Amin Ghafourian, et al.
0

Autoencoders have been extensively used in the development of recent anomaly detection techniques. The premise of their application is based on the notion that after training the autoencoder on normal training data, anomalous inputs will exhibit a significant reconstruction error. Consequently, this enables a clear differentiation between normal and anomalous samples. In practice, however, it is observed that autoencoders can generalize beyond the normal class and achieve a small reconstruction error on some of the anomalous samples. To improve the performance, various techniques propose additional components and more sophisticated training procedures. In this work, we propose a remarkably straightforward alternative: instead of adding neural network components, involved computations, and cumbersome training, we complement the reconstruction loss with a computationally light term that regulates the norm of representations in the latent space. The simplicity of our approach minimizes the requirement for hyperparameter tuning and customization for new applications which, paired with its permissive data modality constraint, enhances the potential for successful adoption across a broad range of applications. We test the method on various visual and tabular benchmarks and demonstrate that the technique matches and frequently outperforms alternatives. We also provide a theoretical analysis and numerical simulations that help demonstrate the underlying process that unfolds during training and how it can help with anomaly detection. This mitigates the black-box nature of autoencoder-based anomaly detection algorithms and offers an avenue for further investigation of advantages, fail cases, and potential new directions.

READ FULL TEXT

page 6

page 7

research
07/03/2022

Anomaly Detection with Adversarially Learned Perturbations of Latent Space

Anomaly detection is to identify samples that do not conform to the dist...
research
02/15/2023

A Subspace Projection Approach to Autoencoder-based Anomaly Detection

Autoencoder (AE) is a neural network (NN) architecture that is trained t...
research
08/30/2022

Deep Autoencoders for Anomaly Detection in Textured Images using CW-SSIM

Detecting anomalous regions in images is a frequently encountered proble...
research
07/18/2020

DDR-ID: Dual Deep Reconstruction Networks Based Image Decomposition for Anomaly Detection

One pivot challenge for image anomaly (AD) detection is to learn discrim...
research
10/01/2021

Probabilistic Robust Autoencoders for Anomaly Detection

Empirical observations often consist of anomalies (or outliers) that con...
research
04/02/2018

Regional Priority Based Anomaly Detection using Autoencoders

In the recent times, autoencoders, besides being used for compression, h...
research
12/14/2022

Lorentz Group Equivariant Autoencoders

There has been significant work recently in developing machine learning ...

Please sign up or login with your details

Forgot password? Click here to reset