Textural-Structural Joint Learning for No-Reference Super-Resolution Image Quality Assessment

by   Yuqing Liu, et al.

Image super-resolution (SR) has been widely investigated in recent years. However, it is challenging to fairly estimate the performances of various SR methods, as the lack of reliable and accurate criteria for perceptual quality. Existing SR image quality assessment (IQA) metrics usually concentrate on the specific kind of degradation without distinguishing the visual sensitive areas, which have no adaptive ability to describe the diverse SR degeneration situations. In this paper, we focus on the textural and structural degradation of image SR which acts as a critical role for visual perception, and design a dual stream network to jointly explore the textural and structural information for quality prediction, dubbed TSNet. By mimicking the human vision system (HVS) that pays more attention to the significant areas of the image, we develop the spatial attention mechanism to make the visual-sensitive areas more distinguishable, which improves the prediction accuracy. Feature normalization (F-Norm) is also developed to investigate the inherent spatial correlation of SR features and boost the network representation capacity. Experimental results show the proposed TSNet predicts the visual quality more accurate than the state-of-the-art IQA methods, and demonstrates better consistency with the human's perspective. The source code will be made available at http://github.com/yuqing-liu-dut/NRIQA_SR.


page 1

page 5

page 9


Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment

With the emergence of image super-resolution (SR) algorithm, how to blin...

SPQE: Structure-and-Perception-Based Quality Evaluation for Image Super-Resolution

The image Super-Resolution (SR) technique has greatly improved the visua...

Blind Quality Assessment for Image Superresolution Using Deep Two-Stream Convolutional Networks

Numerous image superresolution (SR) algorithms have been proposed for re...

QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution

Latest advances in Super-Resolution (SR) have been tested with general p...

Cross-SRN: Structure-Preserving Super-Resolution Network with Cross Convolution

It is challenging to restore low-resolution (LR) images to super-resolut...

On the Effectiveness of Spectral Discriminators for Perceptual Quality Improvement

Several recent studies advocate the use of spectral discriminators, whic...

Please sign up or login with your details

Forgot password? Click here to reset