The Overlap Gap Property in Principal Submatrix Recovery

08/26/2019
by   David Gamarnik, et al.
0

We study support recovery for a k × k principal submatrix with elevated mean λ/N, hidden in an N× N symmetric mean zero Gaussian matrix. Here λ>0 is a universal constant, and we assume k = N ρ for some constant ρ∈ (0,1). We establish that the MLE recovers a constant proportion of the hidden submatrix if and only if λ≳√(1/ρlog1/ρ). The MLE is computationally intractable in general, and in fact, for ρ>0 sufficiently small, this problem is conjectured to exhibit a statistical-computational gap. To provide rigorous evidence for this, we study the likelihood landscape for this problem, and establish that for some ε>0 and √(1/ρlog1/ρ)≪λ≪1/ρ^1/2 + ε, the problem exhibits a variant of the Overlap-Gap-Property(OGP). As a direct consequence, we establish that a family of local MCMC based algorithms do not achieve optimal recovery. Finally, we establish that for λ > 1/ρ, a simple spectral method recovers a constant proportion of the hidden submatrix.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro