The Point-to-Set Principle, the Continuum Hypothesis, and the Dimensions of Hamel Bases

09/22/2021
by   Jack H. Lutz, et al.
0

We prove that the Continuum Hypothesis implies that every real number in (0,1] is the Hausdorff dimension of a Hamel basis of the vector space of reals over the field of rationals. The logic of our proof is of particular interest. The statement of our theorem is classical; it does not involve the theory of computing. However, our proof makes essential use of algorithmic fractal dimension–a computability-theoretic construct–and the point-to-set principle of J. Lutz and N. Lutz (2018).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro