The R2D2 Prior for Generalized Linear Mixed Models
In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination (R2), which then induces a prior on the individual parameters. We achieve this by placing a beta prior on R2 and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest to approximate the prior by using a generalized beta prime distribution that matches it closely. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated data where it particularly shines in high-dimensional examples as well as real-world data which shows its ability to model spatial correlation in the random effects.
READ FULL TEXT