The Size of a Hyperball in a Conceptual Space

07/04/2017
by   Lucas Bechberger, et al.
0

The cognitive framework of conceptual spaces [3] provides geometric means for representing knowledge. A conceptual space is a high-dimensional space whose dimensions are partitioned into so-called domains. Within each domain, the Euclidean metric is used to compute distances. Distances in the overall space are computed by applying the Manhattan metric to the intra-domain distances. Instances are represented as points in this space and concepts are represented by regions. In this paper, we derive a formula for the size of a hyperball under the combined metric of a conceptual space. One can think of such a hyperball as the set of all points having a certain minimal similarity to the hyperball's center.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro