The Variability of Model Specification

10/06/2021
by   Joseph R. Barr, et al.
9

It's regarded as an axiom that a good model is one that compromises between bias and variance. The bias is measured in training cost, while the variance of a (say, regression) model is measure by the cost associated with a validation set. If reducing bias is the goal, one will strive to fetch as complex a model as necessary, but complexity is invariably coupled with variance: greater complexity implies greater variance. In practice, driving training cost to near zero does not pose a fundamental problem; in fact, a sufficiently complex decision tree is perfectly capable of driving training cost to zero; however, the problem is often with controlling the model's variance. We investigate various regression model frameworks, including generalized linear models, Cox proportional hazard models, ARMA, and illustrate how misspecifying a model affects the variance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro