Top K Relevant Passage Retrieval for Biomedical Question Answering

by   Shashank Gupta, et al.

Question answering is a task that answers factoid questions using a large collection of documents. It aims to provide precise answers in response to the user's questions in natural language. Question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. On the web, there is no single article that could provide all the possible answers available on the internet to the question of the problem asked by the user. The existing Dense Passage Retrieval model has been trained on Wikipedia dump from Dec. 20, 2018, as the source documents for answering questions. Question answering (QA) has made big strides with several open-domain and machine comprehension systems built using large-scale annotated datasets. However, in the clinical domain, this problem remains relatively unexplored. According to multiple surveys, Biomedical Questions cannot be answered correctly from Wikipedia Articles. In this work, we work on the existing DPR framework for the biomedical domain and retrieve answers from the Pubmed articles which is a reliable source to answer medical questions. When evaluated on a BioASQ QA dataset, our fine-tuned dense retriever results in a 0.81 F1 score.


page 1

page 2

page 3

page 4


Dense Passage Retrieval for Open-Domain Question Answering

Open-domain question answering relies on efficient passage retrieval to ...

Generating Scientific Question Answering Corpora from Q A forums

Question Answering (QA) is a natural language processing task that aims ...

Contributions to the Improvement of Question Answering Systems in the Biomedical Domain

This thesis work falls within the framework of question answering (QA) i...

QAMPARI: : An Open-domain Question Answering Benchmark for Questions with Many Answers from Multiple Paragraphs

Existing benchmarks for open-domain question answering (ODQA) typically ...

Recent Advances in Automated Question Answering In Biomedical Domain

The objective of automated Question Answering (QA) systems is to provide...

IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions

Although counterfactual reasoning is a fundamental aspect of intelligenc...

CLINIQA: A Machine Intelligence Based Clinical Question Answering System

The recent developments in the field of biomedicine have made large volu...

Please sign up or login with your details

Forgot password? Click here to reset