Towards Comparative Physical Interpretation of Spatial Variability Aware Neural Networks: A Summary of Results

10/29/2021
by   Jayant Gupta, et al.
0

Given Spatial Variability Aware Neural Networks (SVANNs), the goal is to investigate mathematical (or computational) models for comparative physical interpretation towards their transparency (e.g., simulatibility, decomposability and algorithmic transparency). This problem is important due to important use-cases such as reusability, debugging, and explainability to a jury in a court of law. Challenges include a large number of model parameters, vacuous bounds on generalization performance of neural networks, risk of overfitting, sensitivity to noise, etc., which all detract from the ability to interpret the models. Related work on either model-specific or model-agnostic post-hoc interpretation is limited due to a lack of consideration of physical constraints (e.g., mass balance) and properties (e.g., second law of geography). This work investigates physical interpretation of SVANNs using novel comparative approaches based on geographically heterogeneous features. The proposed approach on feature-based physical interpretation is evaluated using a case-study on wetland mapping. The proposed physical interpretation improves the transparency of SVANN models and the analytical results highlight the trade-off between model transparency and model performance (e.g., F1-score). We also describe an interpretation based on geographically heterogeneous processes modeled as partial differential equations (PDEs).

READ FULL TEXT

page 3

page 7

research
11/23/2021

Composing Partial Differential Equations with Physics-Aware Neural Networks

We introduce a compositional physics-aware neural network (FINN) for lea...
research
11/17/2020

Towards Spatial Variability Aware Deep Neural Networks (SVANN): A Summary of Results

Spatial variability has been observed in many geo-phenomena including cl...
research
05/16/2019

Vector Field Neural Networks

This work begins by establishing a mathematical formalization between di...
research
05/02/2023

Convergence and error analysis of PINNs

Physics-informed neural networks (PINNs) are a promising approach that c...
research
07/14/2023

Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks

This paper proposes a novel approach to integrating partial differential...
research
09/16/2020

Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability

Recent years have witnessed an increasing number of interpretation metho...

Please sign up or login with your details

Forgot password? Click here to reset