Towards Power-Efficient Design of Myoelectric Controller based on Evolutionary Computation
Myoelectric pattern recognition is one of the important aspects in the design of the control strategy for various applications including upper-limb prostheses and bio-robotic hand movement systems. The current work has proposed an approach to design an energy-efficient EMG-based controller by considering a supervised learning framework using a kernelized SVM classifier for decoding the information of surface electromyography (sEMG) signals to infer the underlying muscle movements. In order to achieve the optimized performance of the EMG-based controller, our main strategy of classifier design is to reduce the false movements of the overall system (when the EMG-based controller is at the `Rest' position). To this end, unlike the traditional single training objective of soft margin kernelized SVM, we have formulated the training algorithm of the proposed supervised learning system as a general constrained multi-objective optimization problem. An elitist multi-objective evolutionary algorithm - the non-dominated sorting genetic algorithm II (NSGA-II) has been used for the tuning of SVM hyperparameters. We have presented the experimental results by performing the experiments on a dataset consisting of the sEMG signals collected from eleven subjects at five different upper limb positions. It is evident from the presented result that the proposed approach provides much more flexibility to the designer in selecting the parameters of the classifier to optimize the energy efficiency of the EMG-based controller.
READ FULL TEXT