Uncertainty quantification for spatio-temporal computer models with calibration-optimal bases

by   James M Salter, et al.

The calibration of complex computer codes using uncertainty quantification (UQ) methods is a rich area of statistical methodological development. When applying these techniques to simulators with spatio-temporal output, it is now standard to use principal component decomposition to reduce the dimensions of the outputs in order to allow Gaussian process emulators to predict the output for calibration. We outline the `terminal case', in which the model cannot reproduce observations to within model discrepancy, and for which standard calibration methods in UQ fail to give sensible results. We show that even when there is no such issue with the model, the standard decomposition on the outputs can and usually does lead to a terminal case analysis. We present a simple test to allow a practitioner to establish whether their experiment will result in a terminal case analysis and a methodology for defining calibration-optimal bases that avoid this whenever it is not inevitable. We apply these ideas to the CanAM4 model to demonstrate the terminal case issue arising for climate models. We discuss climate model tuning and the estimation of model discrepancy within this context, and show how the optimal rotation algorithm can be used in developing practical climate model tuning tools.


page 1

page 2

page 3

page 4


Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM

Parameters in climate models are usually calibrated manually, exploiting...

Coexchangeable process modelling for uncertainty quantification in joint climate reconstruction

Any experiment with climate models relies on a potentially large set of ...

Uncertainty quantification in urban drainage simulation: fast surrogates for sensitivity analysis and model calibration

This paper presents an efficient surrogate modeling strategy for the unc...

A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models

This paper develops a frequentist solution to the functional calibration...

Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration

With the advancements of computer architectures, the use of computationa...

Demonstration of the Relationship between Sensitivity and Identifiability for Inverse Uncertainty Quantification

Inverse Uncertainty Quantification (UQ), or Bayesian calibration, is the...

Autocalibration of the E3SM version 2 atmosphere model using a PCA-based surrogate for spatial fields

Global Climate Model (GCM) tuning (calibration) is a tedious and time-co...

Please sign up or login with your details

Forgot password? Click here to reset