Unsupervised Class-Incremental Learning Through Confusion

04/09/2021
by   Shivam Khare, et al.
3

While many works on Continual Learning have shown promising results for mitigating catastrophic forgetting, they have relied on supervised training. To successfully learn in a label-agnostic incremental setting, a model must distinguish between learned and novel classes to properly include samples for training. We introduce a novelty detection method that leverages network confusion caused by training incoming data as a new class. We found that incorporating a class-imbalance during this detection method substantially enhances performance. The effectiveness of our approach is demonstrated across a set of image classification benchmarks: MNIST, SVHN, CIFAR-10, CIFAR-100, and CRIB.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset