Utilizing gradient approximations to optimize data selection protocols for tumor growth model calibration

12/25/2021
by   Allison L. Lewis, et al.
0

The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly more prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models correspondingly requires more detailed clinical data. This raises questions about how much data should be collected and when, in order to minimize the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using a gradient-based score function to determine the optimal data collection times for model calibration. The novel score function introduced in this work eliminates the need for a weight parameter used in a previous study's score function, while still yielding accurate and efficient model calibration using even fewer scans on a sample set of synthetic data, simulating tumors of varying levels of radiosensitivity. We also conduct a robust analysis of the calibration accuracy and certainty, using both error and uncertainty metrics. Unlike the error analysis of the previous study, the inclusion of uncertainty analysis in this work|as a means for deciding when the algorithm can be terminated|provides a more realistic option for clinical decision-making, since it does not rely on data that will be collected later in time.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
08/23/2023

Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas

We develop a methodology to create data-driven predictive digital twins ...
research
02/24/2021

Quantitative in vivo imaging to enable tumor forecasting and treatment optimization

Current clinical decision-making in oncology relies on averages of large...
research
01/29/2020

Reducing complexity and unidentifiability when modelling human atrial cells

Mathematical models of a cellular action potential in cardiac modelling ...
research
04/15/2020

Hierarchical Bayesian propulsion power models for marine vessels

Marine traffic is a major contributor to CO2 emissions worldwide. Assess...
research
08/21/2023

Bayesian Optimal Experimental Design for Constitutive Model Calibration

Computational simulation is increasingly relied upon for high-consequenc...
research
06/10/2021

Ensemble inversion for brain tumor growth models with mass effect

We propose a method for extracting physics-based biomarkers from a singl...

Please sign up or login with your details

Forgot password? Click here to reset