Valid Post-Detection Inference for Change Points Identified Using Trend Filtering
There are many research works and methods about change point detection in the literature. However, there are only a few that provide inference for such change points after being estimated. This work mainly focuses on a statistical analysis of change points estimated by the PRUTF algorithm, which incorporates trend filtering to determine change points in piecewise polynomial signals. This paper develops a methodology to perform statistical inference, such as computing p-values and constructing confidence intervals in the newly developed post-selection inference framework. Our work concerns both cases of known and unknown error variance. As pointed out in the post-selection inference literature, the length of such confidence intervals are undesirably long. To resolve this shortcoming, we also provide two novel strategies, global post-detection, and local post-detection which are based on the intrinsic properties of change points. We run our proposed methods on real as well as simulated data to evaluate their performances.
READ FULL TEXT