Variational Causal Networks: Approximate Bayesian Inference over Causal Structures

by   Yashas Annadani, et al.

Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence class thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.


page 1

page 2

page 3

page 4


Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes

Bayesian causal structure learning aims to learn a posterior distributio...

Loss convergence in a causal Bayesian neural network of retail firm performance

We extend the empirical results from the structural equation model (SEM)...

DiBS: Differentiable Bayesian Structure Learning

Bayesian structure learning allows inferring Bayesian network structure ...

Tractable Uncertainty for Structure Learning

Bayesian structure learning allows one to capture uncertainty over the c...

Variational Causal Dynamics: Discovering Modular World Models from Interventions

Latent world models allow agents to reason about complex environments wi...

DAGSurv: Directed Acyclic Graph Based Survival Analysis Using Deep Neural Networks

Causal structures for observational survival data provide crucial inform...

Scalable Computation of Causal Bounds

We consider the problem of computing bounds for causal queries on causal...

Please sign up or login with your details

Forgot password? Click here to reset