Wavelet-based estimation of power densities of size-biased data

12/24/2021
by   Michel H. Montoril, et al.
0

We propose a new wavelet-based method for density estimation when the data are size-biased. More specifically, we consider a power of the density of interest, where this power exceeds 1/2. Warped wavelet bases are employed, where warping is attained by some continuous cumulative distribution function. This can be seen as a general framework in which the conventional orthonormal wavelet estimation is the case where warping distribution is the standard uniform c.d.f. We show that both linear and nonlinear wavelet estimators are consistent, with optimal and/or near-optimal rates. Monte Carlo simulations are performed to compare four special settings which are easy to interpret in practice. An application with a real dataset on fatal traffic accidents involving alcohol illustrates the method. We observe that warped bases provide more flexible and superior estimates for both simulated and real data. Moreover, we find that estimating the power of a density (for instance, its square root) further improves the results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset