Weight-dependent Gates for Network Pruning

07/04/2020
by   Yun Li, et al.
1

In this paper, we propose a simple and effective network pruning framework, which introduces novel weight-dependent gates (W-Gates) to prune filter adaptively. We argue that the pruning decision should depend on the convolutional weights, in other words, it should be a learnable function of filter weights. We thus construct the Filter Gates Learning Module (FGL) to learn the information from convolutional weights and obtain binary W-Gates to prune or keep the filters automatically. To prune the network under hardware constraint, we train a Latency Predict Net (LPNet) to estimate the hardware latency of candidate pruned networks. Based on the proposed LPNet, we can optimize W-Gates and the pruning ratio of each layer under latency constraint. The whole framework is differentiable and can be optimized by gradient-based method to achieve a compact network with better trade-off between accuracy and efficiency. We have demonstrated the effectiveness of our method on Resnet34, Resnet50 and MobileNet V2, achieving up to 1.33/1.28/1.1 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art pruning methods, our method achieves superior performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro