When Meta-Surfaces Meet Users: Optimization of Smart Radio Environments in 6G Sub-THz Communications
We consider a smart radio environment where meta-surfaces are employed to improve the performance of wireless networks working at sub-THz frequencies. To this end, we propose a comprehensive mathematical channel model, taking into account both the ability of the meta-surfaces to redirect the impinging signal towards a desired direction, and the signal reflection due to large objects. We show how the design of both the meta-surface and the transmitter precoder influences the network throughput. Furthermore, we compare several algorithms to optimize the effect of the meta-surfaces in a realistic scenario. As a result, a simpler algorithm that associates network users and meta-surfaces provides a performance comparable to more complex numerical optimization methods. Simulation results suggest how many users are supported in the designed system.
READ FULL TEXT