Wireless charging for weighted energy balance in populations of mobile peers

09/24/2021
by   Sotiris Nikoletseas, et al.
0

Wireless energy transfer is an emerging technology that is used in networks of battery-powered devices in order to deliver energy and keep the network functional. Existing state-of-the-art studies have mainly focused on applying this technology on networks of relatively strong computational and communicational capabilities (wireless sensor networks, ad-hoc networks); also they assume energy transfer from special chargers to regular network nodes. Different from these works, we study how to efficiently transfer energy wirelessly in populations of battery-limited devices, towards prolonging their lifetime. In contrast to the state-of-the-art, we assume a much weaker population of distributed devices which are exchanging energy in a "peer to peer" manner with each other, without any special charger nodes. We address a quite general case of diverse energy levels and priorities in the network and study the problem of how the system can efficiently reach a weighted energy balance state distributively, under both loss-less and lossy power transfer assumptions. Three protocols are designed, analyzed and evaluated, achieving different performance trade-offs between energy balance quality, convergence time and energy efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset