Multi-Aspect Tagging for Collaborative
Structuring

Katharina Morik and Michael Wurst

University of Dortmund, Department of Computer Science
Baroperstr. 301, 44221 Dortmund, Germany
morik@ls8.cs.uni-dortmund

Abstract. Local tag structures have become frequent through Web 2.0:
Users "tag" their data without specifying the underlying semantics. Ev-
ery user annotates items in an individual way using the own labels. Even
if two users happen to use a tag with the same name, it need not mean
the same. Moreover, within the collection of a single user, media items
are tagged multiply using different aspects, e.g., topic, genre, occasion,
mood. Again, several users applying the same name for an aspect does
not imply that actually the same aspect is meant.

Nevertheless, users could benefit from the tagging work of others (folk-
sonomies). The set of items clustered together by the same label in one
user’s collection form a pattern. Knowing this pattern is informative
for another user. In contrast to other cluster ensemble methods or dis-
tributed clustering, a global model (consensus) is not the aim. Each user
wants to keep the tags already annotated, wants to keep the diverse as-
pects under which the items were organized, and only wishes to enhance
the own structure by those of others. A clustering algorithm which struc-
tures items has to take into account the local, multi-aspect nature of the
task structures. The LACE algorithm [9] is such a clustering algorithm.

1 Local Patterns in Parallel Universes

Large collections of documents, music, and videos are stored today at personal
computers. The collections can be structured by a general scheme as is done,
e.g., by iTunes, where artist, album, genre, date annotate the music collection.
The semantic web has focused on structuring text collections using general on-
tologies. Users additionally structure their collections concerning several aspects
of personal concern. The broad general schemes are enhanced by personal, more
specific aspects, e.g., mood, time of day for structuring music, or more finely
grained topic structures for text collections. These enhancements are local, i.e.
they are the personal view of a certain user who does not aim at a global struc-
ture for all users. We might call the sets of (media) items which are clustered
together by a user (i.e. they are tagged by the same label), a local pattern. All
these patterns of a user are structured by aspects to form this user’s universe.
Since many users build-up their universes in parallel, there exist many parallel
universes.

Dagstuhl Seminar Proceedings 07181
Parallel Universes and Local Patterns
http://drops.dagstuhl.de/opus/volltexte/2007/1263



While users tend to start the organization of their personal collection eagerly,
they often end up with a large set of items which are not yet annotated and a
structure which is too coarse. Facing this situation, we ask, how machine learning
techniques could help the users.

If there are enough annotated items, classification learning on one user’s
collection can help. It delivers a decision function ¢ which maps items x of the
domain X to a class g in a set of classes G. New items will be classified as soon
as they come in and the user has no burden of annotation any more. However,
classification does not refine the structure.

Classification: The input is I = {¢ : S — G}, where S C X represents the
training examples and ¢ their mapping to the set of predefined classes G.
The tasks is to output exactly one function O = {¢ : X — G} that is able to
assign all possible objects to exactly one class in G. The classification setting
can be extended to hierarchical classification with I = {p : S — 29} and
O={p: X — 26},

If the classification is trained on the local patterns of one user, it delivers a local
model for each local pattern.

Exploiting other users’ local models could be performed by classifier en-
sembles. In this case, all the parallel universes together classify new items in a
consensus model. For our application, this has several disadvantages. First, the
consensus model destroys the specific, individual structure of a user’s collection,
in the long run. Second, the structure is not refined, because the classes are
predefined.

Classifier Ensembles: The input is now a set of mappings I C {¢|p: S — G},
but the output is still a single function O = { : X — G}. Again, the setting
can be extended to hierarchical classifier ensembles with I C {¢|p : S — 2¢}
and O = {p: X — 29}

If there is no structure given yet, clustering is the method to choose. It creates
a structure of groups G for the not yet annotated items S C X. However, it
does not take into account the structure which the user already has built up.
Semi-supervised clustering obeys given groupings [3]|. Note, that clustering does
not predict previously unseen items as does classification. Hence, the domain
of the function ¢ is not X but S. In supervised clustering, the input function
constrains the output function, where both are defined on the same domain.
However, supervised clustering does not refine structures.

Supervised Clustering: In contrast to traditional clustering, a mapping for
some objects x € § C X to their clusters g € G is input, I = {p : S — G}.
The output is O = {¢ : S — G} or for the hierarchical case O = {¢ : § —
21,

Supervised clustering may deliver a local model for a user’s local patterns as
well with as without any support from other users.

We may consider the structuring achieved so far a set of partitionings (;,
each mapping a subset of the given items to a set of groups G;. For instance,



a mapping ; concerning moods and another one, @5, concerning time of day
may be given. Ensemble clustering then produces a consensus @3 which combines
these input partitionings [6]. This is almost what we need. However, it does not
take into account the reason for applying clustering, i.e. the set S of objects to
be integrated. Moreover, it may change the already designed partitionings of the
user, which she doesn’t want.

Ensemble clustering: For cluster ensembles, a set I C {p;|¢; : S — G;}
of partitions of the objects in S is given. The output is a single partition
O = {p : S — G}. Hierarchical cluster ensembles could be defined similarly
with I C {@i]p; : S — 2%} and O = {p: S — 2¢}.

We may also consider structures of several users who interact in a network,
each offering a clustering ¢; : S; — G;. A user with the problem of structuring
her left-over items S might now exploit the cluster models of other users in
order to enhance the own structure. Distributed clustering learns a global model
integrating the various local ones [4]. However, this global consensus model again
destroys the structure already created by the user and does not focus on the set
S of not appropriately structured items.

Whether own partial clusterings according to different aspects or those of
other peers in a network are given, the situation is the same: current clustering
methods deliver a consensus model overwriting the given ones and do not take
into account S. In addition, users might want to select among proposed models
which the learner delivers. Hence, the practical need of the user in organizing
her media collection is not yet covered by existing methods. The situation we
are facing is actually a new learning task.

Let X denote the set of all possible objects. A function ¢ : S — G is a
function that maps objects S C X to a (finite) set G of groups. We denote the
domain of a function ¢ with D,,. In cases where we have to deal with overlapping
and hierarchical groups, we denote the set of groups as 2¢.

Definition 1 (Localized Alternative Cluster Ensembles) Given a set S C
X, a set of input functions I C {p; : S; — G;}, and a quality function

q:2% x2?x2% - R (1)

with R being partially ordered® LOCALIZED ALTERNATIVE CLUSTERING ENSEM-
BLES delivers the output functions O C {p;|pi : S; — G;} so that q(I,0,S) is
mazximized and for each p; € O it holds that S C D, .

Note that in contrast to cluster ensembles, the input clusterings can be defined
on any subset S; of X. Since for all ¢; € O it must hold that S C D,,,, all output
clusterings must at least cover the items in S. In [9], we present LACE, a method
deriving a new clustering from existing ones by extending the existing clusterings
and combining them such, that each of them covers a subset of objects in S.

! For example, R = R if one is interested in a unique solution.



First, we search for a function ¢; in I that best fits the set of query objects
S. For all objects not sufficiently covered by ¢;, we search for another function
in I that fits the remaining points. This process continues until either all objects
are sufficiently covered, a maximal number of steps is reached, or there are no
input functions left that could cover the remaining objects. All data points that
could not be covered are assigned to the input function ¢; containing the object
which is closest to the one to be covered. Alternative clusterings are produced by
performing this procedure several times, such that each input function is used
at most once.

The LACE algorithm is well suited for distributed scenarios. We assume a
set of nodes connected over an arbitrary communication network. Each node has
one or several functions ; together with the sets S;. If a node A has a set of
objects S to be clustered, it queries the other nodes and these respond with a
set of functions. The answers of the other nodes from the input functions I. A
computes the output O for S. A node B being queried uses its own functions ;
as input and determines the best fitting ¢; for S and send this output back to
A. The algorithm is the same for each node. Each node executes the algorithm
independently of the other nodes.

Putting it into the terms of parallel universes, the method searches in the
universe of local models for one which best structures a set of items and integrates
this with the most similar local model.

Definition 2 (Learning with Parallel Universes) In general, different UNI-
VERSES provide a learning algorithm with different informations about a set of
items, where it is not necessary that each universe covers the overall set of items
or uses the same set of features describing the items. Note, that this definition
does not demand the learning algorithm to come to a consensus model.

Under the heading of clustering with background knowledge, this has shown
advantages, e.g., in text clustering [5]. The methods differ in the kind of knowl-
edge they exploit. In our case, we use a whole set of existing cluster models
directly to recommend new clusterings instead of invoking a feature based clus-
tering algorithm. Thus our approach preserves a maximum of structure in the
users’ taxonomies. This is crucial, as the resulting clusters still contain the origi-
nal node relation and label information making them intuitively comprehensible
and sound.

Parallel universes are also related to approaches of multi-view learning and
clustering [2,1]. As in multi-view learning, the results of one learning process
(here: a user-made cluster model) is exploited to turn an unsupervised learning
task into a supervised one.

Connected to this approach is the combination of several partitions into an
optimal one [8,6]. For our application, these approaches are not appropriate, since
they assume that all cluster models cover the whole set of items. Furthermore,
they are not directly applicable to hierarchical structures.

Finally, parallel universes are loosely related to work in the area of meta
learning [7]. Meta learning focuses on the question how interactions between



similar learning tasks can be exploited to improve the performance of the in-
dividual learners. In this sense, our approach can be seen as a meta learning
approach to clustering.

In our approach, we have considered a user owning a universe of local models,
one for each aspect. A user benefits from the corresponding local models of other
universes. The correspondence is established by extensional similarity. We might
also identify an aspect with a universe. This would mean that all local models
referring to the same aspect form a universe, the diverse aspects are then parallel
universes.

References

1. Steffen Bickel and Tobias Scheffer. Multi-view clustering. In Proceedings of the
IEEE International Conference on Data Mining, 2004.

2. A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.
In Annual Conference on Computational Learning Theory (COLT-98), 1998.

3. David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised clustering
with user feedback. Technical Report TR2003-1892, Cornell University, 2000.

4. Souptik Datta, Kanishka Bhaduri, Chris Giannella, Ran Wolff, and Hillol Kargupta.
Distributed data mining in peer-to-peer networks. IEFEE Inteternet Computing,
special issue on distributed data mining, 2005.

5. Andreas Hotho, Steffen Staab, and Gerd Stumme. Ontologies improve text docu-
ment clustering. In ICDM, pages 541-544, 2003.

6. Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge reuse frame-
work for combining partitionings. In Proceedings of AAAI 2002, Edmonton, Canada,
2002.

7. S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The
TC algorithm. In L. Saitta, editor, Proc. of the ICML, San Mateo, CA, 1996. Morgen
Kaufmann.

8. Alexander P. Topchy, Anil K. Jain, and William F. Punch. Combining multiple
weak clusterings. In ICDM, pages 331-338, 2003.

9. Michael Wurst, Katharina Morik, and Ingo Mierswa. Localized alternative cluster
ensembles for collaborative structuring. In T. Scheffer et al., editor, Proc. of the
European Conference on Machine Learning (ECML 2006), pages 485-496. Springer,
2006.



