A 2-Approximation for the Bounded Treewidth Sparsest Cut Problem in FPT Time

11/11/2021
by   Vincent Cohen-Addad, et al.
0

In the non-uniform sparsest cut problem, we are given a supply graph G and a demand graph D, both with the same set of nodes V. The goal is to find a cut of V that minimizes the ratio of the total capacity on the edges of G crossing the cut over the total demand of the crossing edges of D. In this work, we study the non-uniform sparsest cut problem for supply graphs with bounded treewidth k. For this case, Gupta, Talwar and Witmer [STOC 2013] obtained a 2-approximation with polynomial running time for fixed k, and the question of whether there exists a c-approximation algorithm for a constant c independent of k, that runs in FPT time, remained open. We answer this question in the affirmative. We design a 2-approximation algorithm for the non-uniform sparsest cut with bounded treewidth supply graphs that runs in FPT time, when parameterized by the treewidth. Our algorithm is based on rounding the optimal solution of a linear programming relaxation inspired by the Sherali-Adams hierarchy. In contrast to the classic Sherali-Adams approach, we construct a relaxation driven by a tree decomposition of the supply graph by including a carefully chosen set of lifting variables and constraints to encode information of subsets of nodes with super-constant size, and at the same time we have a sufficiently small linear program that can be solved in FPT time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro