A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental Data

09/21/2021
by   Shirley Rojas-Salazar, et al.
0

Environmental time series data observed at high frequencies can be studied with approaches such as hidden Markov and semi-Markov models (HMM and HSMM). HSMMs extend the HMM by explicitly modeling the time spent in each state. In a discrete-time HSMM, the duration in each state can be modeled with a zero-truncated Poisson distribution, where the duration parameter may be state-specific but constant in time. We extend the HSMM by allowing the state-specific duration parameters to vary in time and model them as a function of known covariates observed over a period of time leading up to a state transition. In addition, we propose a data subsampling approach given that high-frequency data can violate the conditional independence assumption of the HSMM. We apply the model to high-frequency data collected by an instrumented buoy in Lake Mendota. We model the phycocyanin concentration, which is used in aquatic systems to estimate the relative abundance of blue-green algae, and identify important time-varying effects associated with the duration in each state.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro