A Comparative Survey of Deep Active Learning
Active Learning (AL) is a set of techniques for reducing labeling cost by sequentially selecting data samples from a large unlabeled data pool for labeling. Meanwhile, Deep Learning (DL) is data-hungry, and the performance of DL models scales monotonically with more training data. Therefore, in recent years, Deep Active Learning (DAL) has risen as feasible solutions for maximizing model performance while minimizing the expensive labeling cost. Abundant methods have sprung up and literature reviews of DAL have been presented before. However, the performance comparison of different branches of DAL methods under various tasks is still insufficient and our work fills this gap. In this paper, we survey and categorize DAL-related work and construct comparative experiments across frequently used datasets and DAL algorithms. Additionally, we explore some factors (e.g., batch size, number of epochs in the training process) that influence the efficacy of DAL, which provides better references for researchers to design their own DAL experiments or carry out DAL-related applications. We construct a DAL toolkit, DeepAL+, by re-implementing many highly-cited DAL-related methods, and it will be released to the public.
READ FULL TEXT