A Comparison of Deep Learning Models for the Prediction of Hand Hygiene Videos

11/03/2021
by   Rashmi Bakshi, et al.
0

This paper presents a comparison of various deep learning models such as Exception, Resnet-50, and Inception V3 for the classification and prediction of hand hygiene gestures, which were recorded in accordance with the World Health Organization (WHO) guidelines. The dataset consists of six hand hygiene movements in a video format, gathered for 30 participants. The network consists of pre-trained models with image net weights and a modified head of the model. An accuracy of 37 achieved in the classification report after the training of the models for 25 epochs. ResNet-50 model clearly outperforms with correct class predictions. The major speed limitation can be overcome with the use of fast processing GPU for future work. A complete hand hygiene dataset along with other generic gestures such as one-hand movements (linear hand motion; circular hand rotation) will be tested with ResNet-50 architecture and the variants for health care workers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset