A Construction of C^r Conforming Finite Element Spaces in Any Dimension

03/27/2021
by   Jun Hu, et al.
0

This paper proposes a construction of local C^r interpolation spaces and C^r conforming finite element spaces with arbitrary r in any dimension. It is shown that if k ≥ 2^dr+1 the space 𝒫_k of polynomials of degree ≤ k can be taken as the shape function space of C^r finite element spaces in d dimensions. This is the first work on constructing such C^r conforming finite elements in any dimension in a unified way. It solves a long-standing open problem in finite element methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro