A Convex-Nonconvex Strategy for Grouped Variable Selection
This paper deals with the grouped variable selection problem. A widely used strategy is to equip the loss function with a sparsity-promoting penalty. Existing methods include the group Lasso, group SCAD, and group MCP. The group Lasso solves a convex optimization problem but is plagued by underestimation bias. The group SCAD and group MCP avoid the estimation bias but require solving a non-convex optimization problem that suffers from local optima. In this work, we propose an alternative method based on the generalized minimax concave (GMC) penalty, which is a folded concave penalty that can maintain the convexity of the objective function. We develop a new method for grouped variable selection in linear regression, the group GMC, that generalizes the strategy of the original GMC estimator. We present an efficient algorithm for computing the group GMC estimator. We also prove properties of the solution path to guide its numerical computation and tuning parameter selection in practice. We establish error bounds for both the group GMC and original GMC estimators. A rich set of simulation studies and a real data application indicate that the proposed group GMC approach outperforms existing methods in several different aspects under a wide array of scenarios.
READ FULL TEXT