A Correctness Result for Synthesizing Plans With Loops in Stochastic Domains

05/16/2019
by   Laszlo Treszkai, et al.
0

Finite-state controllers (FSCs), such as plans with loops, are powerful and compact representations of action selection widely used in robotics, video games and logistics. There has been steady progress on synthesizing FSCs in deterministic environments, but the algorithmic machinery needed for lifting such techniques to stochastic environments is not yet fully understood. While the derivation of FSCs has received some attention in the context of discounted expected reward measures, they are often solved approximately and/or without correctness guarantees. In essence, that makes it difficult to analyze fundamental concerns such as: do all paths terminate, and do the majority of paths reach a goal state? In this paper, we present new theoretical results on a generic technique for synthesizing FSCs in stochastic environments, allowing for highly granular specifications on termination and goal satisfaction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset