A Design-Based Perspective on Synthetic Control Methods
Since their introduction in Abadie and Gardeazabal (2003), Synthetic Control (SC) methods have quickly become one of the leading methods for estimating causal effects in observational studies with panel data. Formal discussions often motivate SC methods by the assumption that the potential outcomes were generated by a factor model. Here we study SC methods from a design-based perspective, assuming a model for the selection of the treated unit(s), e.g., random selection as guaranteed in a randomized experiment. We show that SC methods offer benefits even in settings with randomized assignment, and that the design perspective offers new insights into SC methods for observational data. A first insight is that the standard SC estimator is not unbiased under random assignment. We propose a simple modification of the SC estimator that guarantees unbiasedness in this setting and derive its exact, randomization-based, finite sample variance. We also propose an unbiased estimator for this variance. We show in settings with real data that under random assignment this Modified Unbiased Synthetic Control (MUSC) estimator can have a root mean-squared error (RMSE) that is substantially lower than that of the difference-in-means estimator. We show that such an improvement is weakly guaranteed if the treated period is similar to the other periods, for example, if the treated period was randomly selected. The improvement is most likely to be substantial if the number of pre-treatment periods is large relative to the number of control units.
READ FULL TEXT