A Distributed Multi-Robot Coordination Algorithm for Navigation in Tight Environments

by   Roya Firoozi, et al.

This work presents a distributed method for multi-robot coordination based on nonlinear model predictive control (NMPC) and dual decomposition. Our approach allows the robots to coordinate in tight spaces (e.g., highway lanes, parking lots, warehouses, canals, etc.) by using a polytopic description of each robot's shape and formulating the collision avoidance as a dual optimization problem. Our method accommodates heterogeneous teams of robots (i.e., robots with different polytopic shapes and dynamic models can be part of the same team) and can be used to avoid collisions in n-dimensional spaces. Starting from a centralized implementation of the NMPC problem, we show how to exploit the problem structure to allow the robots to cooperate (while communicating their intentions to the neighbors) and compute collision-free paths in a distributed way in real time. By relying on a bi-level optimization scheme, our design decouples the optimization of the robot states and of the collision-avoidance variables to create real time coordination strategies. Finally, we apply our method for the autonomous navigation of a platoon of connected vehicles on a simulation setting. We compare our design with the centralized NMPC design to show the computational benefits of the proposed distributed algorithm. In addition, we demonstrate our method for coordination of a heterogeneous team of robots (with different polytopic shapes).


page 1

page 7


With Whom to Communicate: Learning Efficient Communication for Multi-Robot Collision Avoidance

Decentralized multi-robot systems typically perform coordinated motion p...

A Distributed Pipeline for Scalable, Deconflicted Formation Flying

Reliance on external localization infrastructure and centralized coordin...

Fast Collision Checking: From Single Robots to Multi-Robot Teams

We examine three different algorithms that enable the collision certific...

Concurrent Transmission for Multi-Robot Coordination

An efficient communication mechanism forms the backbone for any multi-ro...

The OpenUAV Swarm Simulation Testbed: a Collaborative DesignStudio for Field Robotics

In this paper, we showcase a multi-robot design studio where simulation ...

Graph Neural Networks for Learning Robot Team Coordination

This paper shows how Graph Neural Networks can be used for learning dist...

Learning multi-robot coordination from demonstrations

This paper develops a Distributed Differentiable Dynamic Game (DDDG) fra...

Please sign up or login with your details

Forgot password? Click here to reset