A Domain-agnostic, Noise-resistant Evolutionary Variational Quantum Eigensolver for Hardware-efficient Optimization in the Hilbert Space
Variational quantum algorithms have shown promise in numerous fields due to their versatility in solving problems of scientific and commercial interest. However, leading algorithms for Hamiltonian simulation, such as the Variational Quantum Eigensolver (VQE), use fixed preconstructed ansatzes, limiting their general applicability and accuracy. Thus, variational forms—the quantum circuits that implement ansatzes —are either crafted heuristically or by encoding domain-specific knowledge. In this paper, we present an Evolutionary Variational Quantum Eigensolver (EVQE), a novel variational algorithm that uses evolutionary programming techniques to minimize the expectation value of a given Hamiltonian by dynamically generating and optimizing an ansatz. The algorithm is equally applicable to optimization problems in all domains, obtaining accurate energy evaluations with hardware-efficient ansatzes that are up to 18.6× shallower and use up to 12× fewer CX gates than results obtained with a unitary coupled cluster ansatz. EVQE demonstrates significant noise-resistant properties, obtaining results in noisy simulation with at least 3.6× less error than VQE using any tested ansatz configuration. We successfully evaluated EVQE on a real 5-qubit IBMQ quantum computer. The experimental results, which we obtained both via simulation and on real quantum hardware, demonstrate the effectiveness of EVQE for general-purpose optimization on the quantum computers of the present and near future.
READ FULL TEXT