A Feature Set of Small Size for the PDF Malware Detection

08/09/2023
by   Ran Liu, et al.
0

Machine learning (ML)-based malware detection systems are becoming increasingly important as malware threats increase and get more sophisticated. PDF files are often used as vectors for phishing attacks because they are widely regarded as trustworthy data resources, and are accessible across different platforms. Therefore, researchers have developed many different PDF malware detection methods. Performance in detecting PDF malware is greatly influenced by feature selection. In this research, we propose a small features set that don't require too much domain knowledge of the PDF file. We evaluate proposed features with six different machine learning models. We report the best accuracy of 99.75 set, which consists of just 12 features, is one of the most conciseness in the field of PDF malware detection. Despite its modest size, we obtain comparable results to state-of-the-art that employ a much larger set of features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset