A global method to identify trees inside and outside of forests with medium-resolution satellite imagery
Scattered trees outside of dense forests are very important for carbon sequestration, supporting livelihoods, maintaining ecosystem integrity, and climate change adaptation and mitigation. In contrast to trees inside of forests, not much is known about the spatial extent and distribution of scattered trees at a global scale. Due to the very high cost of high-resolution satellite imagery, global monitoring systems rely on medium resolution satellites to monitor land use and land use change. However, detecting and monitoring scattered trees with an open canopy using medium resolution satellites is difficult because individual trees often cover a smaller footprint than the satellites resolution. Here we present a globally consistent method to identify trees inside and outside of forests with medium resolution optical and radar imagery. Biweekly cloud-free, pansharpened 10 meter Sentinel-2 optical imagery and Sentinel-1 radar imagery are used to train a fully convolutional network, consisting of a convolutional gated recurrent unit layer and a feature pyramid attention layer. Tested across more than 215,000 Sentinel-1 and Sentinel-2 pixels distributed from -60 to +60 latitude, the proposed model exceeds 75 percent users and producers accuracy identifying trees in hectares with a low to medium density (less than 40 percent) of canopy cover, and 95 percent user's and producer's accuracy in hectares with dense (greater than 40 percent) canopy cover. When applied across large, heterogeneous landscapes, the results demonstrate potential to map trees in high detail and consistent accuracy over diverse landscapes across the globe. This information is important for understanding current land cover and can be used to detect changes in land cover such as agroforestry, buffer zones around biological hotspots, and expansion or encroachment of forests.
READ FULL TEXT