A GMM-Based Stair Quality Model for Human Perceived JPEG Images

11/11/2015
by   Sudeng Hu, et al.
0

Based on the notion of just noticeable differences (JND), a stair quality function (SQF) was recently proposed to model human perception on JPEG images. Furthermore, a k-means clustering algorithm was adopted to aggregate JND data collected from multiple subjects to generate a single SQF. In this work, we propose a new method to derive the SQF using the Gaussian Mixture Model (GMM). The newly derived SQF can be interpreted as a way to characterize the mean viewer experience. Furthermore, it has a lower information criterion (BIC) value than the previous one, indicating that it offers a better model. A specific example is given to demonstrate the advantages of the new approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro