A Hybrid Deep Learning-Based (HYDRA) Framework for Multifault Diagnosis Using Sparse MDT Reports

10/25/2022
by   Muhammad Sajid Riaz, et al.
0

Diminishing viability of manual fault diagnosis in the increasingly complex emerging cellular network has motivated research towards artificial intelligence (AI)-based fault diagnosis using the minimization of drive test (MDT) reports. However, existing AI solutions in the literature remain limited to either diagnosis of faults in a single base station only or the diagnosis of a single fault in a multiple BS scenario. Moreover, lack of robustness to MDT reports spatial sparsity renders these solutions unsuitable for practical deployment. To address this problem, in this paper we present a novel framework named Hybrid Deep Learning-based Root Cause Analysis (HYDRA) that uses a hybrid of convolutional neural networks, extreme gradient boosting, and the MDT data enrichment techniques to diagnose multiple faults in a multiple base station network. Performance evaluation under realistic and extreme settings shows that HYDRA yields an accuracy of 93% and compared to the state-of-the-art fault diagnosis solutions, HYDRA is far more robust to MDT report sparsity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro