A Hypothesis Testing Approach to Nonstationary Source Separation

05/14/2021
by   Reza Sameni, et al.
0

The extraction of nonstationary signals from blind and semi-blind multivariate observations is a recurrent problem. Numerous algorithms have been developed for this problem, which are based on the exact or approximate joint diagonalization of second or higher order cumulant matrices/tensors of multichannel data. While a great body of research has been dedicated to joint diagonalization algorithms, the selection of the diagonalized matrix/tensor set remains highly problem-specific. Herein, various methods for nonstationarity identification are reviewed and a new general framework based on hypothesis testing is proposed, which results in a classification/clustering perspective to semi-blind source separation of nonstationary components. The proposed method is applied to noninvasive fetal ECG extraction, as case study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset